A few months ago, Microsoft let slip a forthcoming Windows 10 feature that was, at the time, called InPrivate Desktop: a lightweight virtual machine for running untrusted applications in an isolated environment. That feature has now been officially announced with a new name, Windows Sandbox.
Windows 10 already uses virtual machines to increase isolation between certain components and protect the operating system. These VMs have been used in a few different ways. Since its initial release, for example, suitably configured systems have used a small virtual machine running alongside the main operating system to host portions of LSASS. LSASS is a critical Windows subsystem that, among other things, knows various secrets, such as password hashes, encryption keys, and Kerberos tickets. Here, the VM is used to protect LSASS from hacking tools such that even if the base operating system is compromised, these critical secrets might be kept safe.
In the other direction, Microsoft added the ability to run Edge tabs within a virtual machine to reduce the risk of compromise when visiting a hostile website. The goal here is the opposite of the LSASS virtual machine—it's designed to stop anything nasty from breaking out of the virtual machine and contaminating the main operating system, rather than preventing an already contaminated main operating system from breaking into the virtual machine.
Windows Sandbox is similar to the Edge virtual machine but designed for arbitrary applications. Running software in a virtual machine and then integrating that software into the main operating system is not new—VMware has done this on Windows for two decades now—but Windows Sandbox is using a number of techniques to reduce the overhead of the virtual machine while also maximizing the performance of software running within the VM, without compromising the isolation it offers.
Traditional virtual machines have their own operating system installation stored on a virtual disk image, and that operating system must be updated and maintained separately from the host operating system. The disk image used by Windows Sandbox, by contrast, shares the majority of its files with the host operating system; it contains a small amount of mutable data, the rest being immutable references to host OS files. This means that it's always running the same version of Windows as the host and that, as the host is updated and patched, the sandbox OS is likewise updated and patched.
Sharing is used for memory, too; operating system executables and libraries loaded within the VM use the same physical memory as those same executables and libraries loaded into the host OS.